Evolutionary wrapper approaches for training set selection as preprocessing mechanism for support vector machines: Experimental evaluation and support vector analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary wrapper approaches for training set selection as preprocessing mechanism for support vector machines: Experimental evaluation and support vector analysis

One of the most powerful, popular and accurate classification techniques is support vector machines (SVMs). In this work, we want to evaluate whether the accuracy of SVMs can be further improved using training set selection (TSS), where only a subset of training instances is used to build the SVM model. By ccepted 3 September 2015 vailable online 30 September 2015

متن کامل

Training Data Selection for Support Vector Machines

In recent years, support vector machines (SVMs) have become a popular tool for pattern recognition and machine learning. Training a SVM involves solving a constrained quadratic programming problem, which requires large memory and enormous amounts of training time for large-scale problems. In contrast, the SVM decision function is fully determined by a small subset of the training data, called s...

متن کامل

Parallel Decomposition Approaches for Training Support Vector Machines

We consider parallel decomposition techniques for solving the large quadratic programming (QP) problems arising in training support vector machines. A recent technique is improved by introducing an efficient solver for the inner QP subproblems and a preprocessing step useful to hot start the decomposition strategy. The effectiveness of the proposed improvements is evaluated by solving large-sca...

متن کامل

Asynchronous Parallel Evolutionary Model Selection for Support Vector Machines

The application of a parallel evolutionary strategy (ES) to model selection for support vector machines is examined. The problem of model selection is a computationally intense non-convex optimization problem. For this reason a parallel search strategy is desirable. A new non-blocking asynchronous ES is developed for this task. The algorithm is tested on five standard test sets optimizing a num...

متن کامل

Support Vector Machines with Evolutionary Feature Selection for Default Prediction

Predicting default probabilities is at the core of credit risk management and is becoming more and more important for banks in order to measure their client’s degree of risk, and for firms to operate successfully. The SVM with evolutionary feature selection is applied to the CreditReform database. We use classical methods such as discriminan analysis (DA), logit and probit models as benchmark O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Soft Computing

سال: 2016

ISSN: 1568-4946

DOI: 10.1016/j.asoc.2015.09.006